
Static Analysis for Software Assurance: Soundness,
Scalability and Adaptiveness

Arnaud J. Venet
CMU / NASA Ames Research Center

Moffett Field, CA 94035
arnaud.j.venet@nasa.gov

Michael R. Lowry
NASA Ames Research Center

Moffett Field, CA 94035
michael.r.lowry@nasa.gov

ABSTRACT
Standard approaches to software assurance are either process-
based or test-based. We propose to include static analysis
by Abstract Interpretation to the software development cy-
cle. Static analysis by Abstract Interpretation provides a
high level of assurance as well as ground-truth evidence in
support of its findings. Successes in the verification of large
industrial codes demonstrate the readiness of this technol-
ogy. However, in order to be practical in real development
environments, static analysis must be able to scale and yield
few false positives without the need for expert hand-tuning.
We present a research agenda to reach this goal based on
the development of adaptive static analysis algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory, Verification, Measurement

Keywords
Abstract Interpretation, Software Certification, Static Anal-
ysis

1. VISION
Automated software verification tools that provide guar-

antees can dramatically change the process and economics
of developing certifiable software systems. Without guar-
antees, a verification tool is only advisory, and cannot sub-
stitute for any human assurance activity such as those pre-
scribed under DO178B. However, if a tool can provide both
guarantees of finding certain classes of defects (no false neg-
atives) and sufficient precision to minimize false positives so
filtering them is economical, then such a tool can become
an integral part of the certification process. As the range of
defects that can be detected in this manner is expanded, as

Copyright 2010 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

well as the size of systems that can be verified, the process
of certification will become increasingly automated.

The three objectives of no false negatives, high precision
(few false positives), and scaling to large systems push the
boundaries of computational complexity. In other words,
except for especially simple classes of defects, no single veri-
fication algorithm will be able to achieve all three. However,
in case studies described here and elsewhere, human experts
have demonstrated that given a particular software system
being certified; they can adapt a custom algorithmic ap-
proach by carefully selecting, composing, and tuning known
verification algorithms to simultaneously achieve these three
objectives.

Can this adaptive expert human approach of selecting and
composing verification algorithms be automated? In this
position paper we discuss this approach within the context of
Abstract Interpretation for static analysis. Then we provide
evidence that automated adaptation to a given problem can
achieve all three objectives. We also describe an agenda for
generalizing the approach beyond static analysis of software.

Static analysis is increasingly used to look for hidden de-
fects in industrial software. The commercialization of tools
like Coverity Prevent [9] or CodeSonar [12], which have been
shown to scale to large code bases and find real bugs, helped
popularize static analysis technology among software devel-
opers. However, in terms of software assurance this tech-
nology does not provide ground truth: all defect reports are
mere warnings, which may turn out to be spurious (false
positives), whereas real defects may go undetected (false
negatives). This class of static analyzers do not produce
any strong evidence in support of the defects reported nor
do they provide any metrics for calibrating false negatives.

A theory devised more than 30 years ago and named Ab-
stract Interpretation [6] enables the construction of static
analyzers that do not yield any false negatives. Abstract
Interpretation provides a methodology to mathematically
derive an algorithm for computing a given class of program
properties from a formal definition of the semantics of the
programming language considered. The static analyzer ob-
tained in this way is not complete, in the sense that it can-
not identify all defects of a certain category for all programs
with absolute certainty, which translates into false positives
being produced. However, the analyzer is sound i.e., all
program defects that fall within the scope of the analyzer
are detected. Hence there are no false negatives within the
scope.

Long considered to be impractical for analyzing real-life
code, in recent years Abstract Interpretation has been suc-

393

cessfully applied to the verification of large aerospace appli-
cations [24, 7, 3, 2]. Customization is the key for achieving
both scalability and low false positive rate: the abstraction
interpretation algorithms are tailored for a special code or
family of codes using knowledge of the application domain
(software architecture, use of certain numerical algorithms,
types of data structures manipulated, etc.). We consider
this evolution as a major step toward the use of static anal-
ysis as a process that can automatically assert ground truth
on some important classes of software properties.

In this position paper, we advocate for the use of static
analysis by abstract interpretation as a fully automated cer-
tification process for modern software assurance. Abstract
interpretation bridges a gap that standard software assur-
ance techniques cannot address: certification standards like
DO-178B are solely concerned with the development process,
testing can only cover so many of all possible behaviors of
the application in the field, and common static analysis tools
do not provide evidence of the absence of defects.

The paper is organized as follows: Section 2 describes the
current state of practice for static analysis based on Ab-
stract Interpretation and highlights the limits of existing
implementations. In Sect. 3 we outline research directions
that would make these static analyzers more adaptable to a
variety of industrial development environments. In Sect. 4
we propose to apply Abstract Interpretation to other phases
of the development cycle and use it in combination with
different verification technologies.

2. CURRENT STATE OF PRACTICE FOR
ABSTRACT INTERPRETATION

Abstract Interpretation [6] breaks down the static analysis
of a program into a number of abstractions and operations
that are formally stated and can be mathematically proven
to correctly represent the semantics of the programming lan-
guage considered (what is usually called soundness). Prob-
ably the single most important structure in Abstract Inter-
pretation is the abstract domain. An abstract domain is
used to represent sets of memory configurations which make
up program invariants. For example, the abstract domain of
intervals represents all possible values of scalar variables at a
certain point in the program by their ranges. The domain of
convex polyhedra [8] is more expressive than intervals since
it can represent linear inequality constraints among program
variables. Other abstract domains may be used to represent
floating-point values [5] or pointers [23]. A static analyzer
combines several abstract domains in order to compute an
abstraction of all possible types of data manipulated by the
program.

A static analyzer based on abstract interpretation does
not look for a certain category of defects, but rather com-
putes an abstraction of all possible memory configurations at
each point in the program using abstract domains. Program
invariants can be readily extracted from abstract domains
and then used to prove or disprove the safety of certain op-
erations in the program. For example, the abstract domain
of intervals can be used to check each arithmetic operation
in the program for possible overflows or underflows. The in-
formation provided by abstract domains can be displayed to
the user as ground-truth evidence of the formal verification
process and used to independently verify the validity of the
static analysis results. This comes in sharp contrast with

commercial bug-finding static analyzers, which provide lim-
ited feedback on example executions that expose a problem.

However, with current technology, it is not possible to
build a static analyzer that is both accurate and efficient.
Precise abstract domains come with hefty computational
costs. The domain of intervals is efficient but not precise
enough in some situations. The domain of convex polyhe-
dra is very precise but its computational complexity is so
high that it cannot be reasonably applied over more than
fifteen variables in practice. There is no one universal ab-
stract domain (or combination of abstract domains) that is
computationally tractable and provides high precision for
static analysis of all programs.

The first generation of static analyzers based on Abstract
Interpretation, like PolySpace [21], had built-in precision
levels, that each implemented a certain precision vs. speed
trade-off and that could be selected by the user. As a result,
only mid-size programs could be analyzed and a high num-
ber of false positives were generally produced. The main
observation is that abstract domains should not be used
uniformly over the whole application, but in a more local
manner, powerful algorithms being used on small portions
of the code whenever extra precision is needed.

This observation has led to the development of a second
generation of static analyzers, like C Global Surveyor [24]
and ASTREE [7], that could both scale to large codes and
achieve low false positive rate. Among the techniques used
was the application of precise numerical domains over small
packets of variables and the design of special-purpose ab-
stract domains for the analysis of certain algorithms, like
linear digital filters [11]. ASTREE could successfully ana-
lyze the fly-by-wire software of the Airbus A380 (over 400K
LOC), while C Global Surveyor could be applied to the
flight software of the NASA Mars Exploration Rovers mis-
sion (over 550K LOC).

Those kind of static analyzers are able to scale to large
codes but can only verify simple program properties, like
the absence of runtime errors (out-of-bounds array access,
null pointer dereference, arithmetic overflow, etc.). Three-
Valued Logic [15] is a static analysis framework based on
Abstract Interpretation that allows the verification of more
advanced program properties, in particular for dynamic data
structures [20], like the correctness of rebalancing operations
for AVL trees [19]. However, these techniques are computa-
tionally more demanding and can only be applied to smaller
software components.

The downside of the Abstract Interpretation approach is
that it requires considerable hand-tuning by experts, who
must also acquire an intimate knowledge of the application
analyzed. In the case of ASTREE for example, a special
family of abstract domains had to be designed in order to
precisely analyze numerical algorithms implementing digital
linear filters [11]. When analyzing a program with Three-
Valued Logic, it is necessary to introduce instrumentation
predicates, which are auxiliary properties that are necessary
for the analyzer to prove the desired property on a specific
program [18]. These are complex steps that cannot be re-
alistically performed by someone who is just a user of the
tool. Moreover, such a custom analyzer can only work for
one application or a very particular family of applications.
It is not realistic to advocate for a broad use of static anal-
ysis as a certification technique in the software development
process if it requires so much expert work.

394

3. TOWARD ADAPTIVE STATIC ANALYZ-
ERS

A central technique to achieve scalability in both AS-
TREE and C Global Surveyor is the variable packing tech-
nique mentioned above. ASTREE performs the packing of
variables statically, based on the variables that occur in one
statement, and there is no interaction among overlapping
variable packets at analysis time. These restrictive assump-
tions were acceptable because of the particular nature of
the code analyzed. In contrast, C Global Surveyor performs
variable packing on-the-fly during the analysis. Two vari-
ables are grouped together only if there is a computational
dependence between them, and packets can be merged as
the analysis proceeds. This abstract domain is adaptive and
is not restricted to a particular class of software.

C Global Surveyor has been initially designed to analyze
a certain architecture of flight code shared by several NASA
missions, specifically Mars Path Finder, Deep Space 1, and
Mars Exploration Rovers. When C Global Surveyor was
applied to different codes from the Space Shuttle or the In-
ternational Space Station, it achieved similar levels of speed
and precision [3]. This consistent behavior is essentially due
to the adaptive abstract domain, which groups variables ac-
cording to a purely semantic criterion as opposed to the
syntactic packing performed by ASTREE.

The adaptive abstract domain implemented C Global Sur-
veyor is complex. It essentially consists of an evolving ab-
stract domain, the structure of which may change numerous
times during the analysis. There is a general mathemati-
cal construction that allows the step-by-step construction of
such domains, characterized as cofibered domains [22], from
simpler existing abstract domains. Cofibered domains can
be used as a building block to design other kinds of abstract
domains that cover different aspects of the analysis of an
application. Whenever a specialized abstract domain is re-
quired to precisely analyze certain parts of an application,
instead of making a one-shot specialization of the analyzer,
we propose to make the abstract domain adaptive. There-
fore, the newly introduced abstract domain can automati-
cally transpose to different applications, without the need
for hand-tuning whenever a new code is analyzed.

In this new formulation for adaptive static analysis, we
advocate for a flexible adaptation of the analysis algorithms
to the problem structure, based on continuous improvement
in the problem structure understanding. This approach en-
riches the capabilities of the analyzer without tying it up
to a particular kind of software. By removing the need for
manual tuning of the analyzer, we believe that this approach
would lead to static analyzers that can be used in broader
development environments. In the rest of this section, we
will lay out the main components of a research agenda along
these lines.

Without delving into technical details, we can just say
that Abstract Interpretation is based on the order-theoretic
notion of a lattice [10]. Given a formal definition of the
semantics of the program, the powerset of all possible pro-
gram configurations is a lattice D and the execution of the
program can be modeled as the least fixpoint of a function
F : D → D. The main idea of Abstract Interpretation is to
come up with a lattice D, called an abstract domain, and a
function F : D → D that together form a sound approxi-
mation of the semantics of the program i.e., there exists a

morphism γ : D → D such that F ◦ γ v γ ◦ F . The main
activity in Abstract Interpretation is to come up with a ma-
chine representable abstract domain D and a computable
function F , the fixpoint of which can be computed in fi-
nite time. The precision and performance of the resulting
static analyzer are almost entirely determined by the choice
of the abstract domain. Popular abstract domains include
the polyhedral domain [8], the linear equality domain [14]
and the octagon domain [17].

Making Abstract Interpretation adaptive implies consid-
ering a family of abstract domains (Di)i∈I instead of a single
one. The abstract domain changes at analysis time in order
to adapt to various situations. The analysis must be able to
smoothly transfer from one domain to the other without any
loss of information, so as to preserve soundness. Cofibered
domains [22] are one such attempt to formalize this situa-
tion in a general Abstract Interpretation setting. Practical
approaches to refine the domain of abstraction include us-
ing inductive inference for Three-Valued Logic [16] or lazy
abstraction [1, 13] for Boolean models.

Another important research direction is the study of the
connection between a specialized abstract domain and the
code on which it applies. Specialized abstract domains, like
the domain of invariants for linear digital filters [11], need
only be activated when a relevant piece of code is analyzed.
Currently, the static analyzer is hand-tuned and/or uses syn-
tactic pattern-matching algorithms to decide when to enable
the abstract domain and when to disable it. In order to
be adopted by non-expert users, the static analyzer must
be able to automatically infer when to trigger a specific ab-
stract domain. This implies being able to recognize a certain
code structure or algorithm, based no longer on the syntax
of the program but on purely semantic grounds. This means
designing a static analysis that is able to infer a semantic
signature of a certain class of algorithms.

More generally, a fully adaptive static analysis framework
would allow, for example, the use of a shape analysis algo-
rithm on one part of the program, a lazy-abstraction based
analysis on another part and a polyhedral invariant analysis
on loop nests. This requires automatically shifting not only
abstractions but also classes of abstractions, e.g., from sym-
bolic to Boolean and then to numerical, smoothly and in a
sound manner. To the best of our awareness, this topic has
not received much attention in the literature on static anal-
ysis, but would prove very important for the development of
fully automated adaptive static analyzers.

4. BEYOND CODE ANALYSIS
Abstract Interpretation can be defined as a theory of dis-

crete approximation. It is essentially used to design sound
static analyzers but this is not the only field of application
of the theory. Abstract domains that provide computable
representations of sets of numerical values are interesting in
their own for the analysis of discrete systems in general, not
just code. For example, the technique of abstract simulation
has been developed to estimate round-off errors introduced
by numerical algorithms modeled in Simulink [4]. Abstract
simulation is performed directly on the Simulink diagram,
which means that one is able to verify numerical behaviors
of embedded systems at the design level.

This is significant, since the cost of fixing a design er-
ror gets dramatically higher when it is detected later in the
development cycle. More generally, block diagram specifica-

395

tions can be subject to analysis by Abstract Interpretation
as long as they can be endowed with a formal semantics.
This is particularly interesting for UML specifications, since
this would allow the verification of properties of the system
early in the development cycle, when no code is present.

At the other end of the verification process, the program
invariants generated by a static analyzer can be used to en-
hance testing. For example, inferred ranges for variables
may be employed to narrow down the search for test in-
put data, whereas interval bounds may reveal hidden edge
cases. This information is also valuable to an explicit-state
model checker as it may substantially cut down the search
space. The synergistic combination of model checking and
static analysis looks promising, as model checkers are good
at finding issues, like deadlocks, that are difficult to detect
using static analysis only.

As a conclusion, we would like to propose the use of Ab-
stract Interpretation techniques at all stages of the software
development process in support of and/or in combination
with other software assurance approaches.

5. REFERENCES
[1] T. Ball and S. K. Rajamani. The slam project:

debugging system software via static analysis. In
POPL, pages 1–3, 2002.

[2] O. Bouissou, E. Conquet, P. Cousot, R. Cousot,

J. Feret, K. Ghorbal, É. Goubault, D. Lesens,
L. Mauborgne, A. Miné, S. Putot, X. Rival, and
M. Turin. Space software validation using abstract
interpretation. In Proc. of the Int. Space System
Engineering Conf., Data Systems in Aerospace
(DASIA 2009), volume SP-669, pages 1–7, May 2009.

[3] G. Brat and Arnaud Venet. Precise and scalable static
program analysis of NASA flight software. In
Proceedings of the IEEE Aerospace Conference, Big
Sky, MT, 2005.

[4] A. Chapoutot and M. Martel. Abstract simulation: a
static analysis of simulink models. In 6th IEEE
International Conference on Embedded Systems and
Software (ICESS’09), 2009.

[5] L. Chen, A. Miné, J. Wang, and P. Cousot. A sound
floating-point polyhedra abstract domain. In
G. Ramalingam, editor, Proceedings of the sixth Asian
Symposium (APLAS’08), pages 3–18, Bangalore,
India, 2009.

[6] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. The ASTRÉE
Analyser. In M. Sagiv, editor, Proc. of the European
Symposium on Programming (ESOP’05), volume 3444
of Lecture Notes in Computer Science, pages 21–30,
April 2–10 2005.

[8] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson,
Arizona, 1978.

[9] Coverity. Prevent. (www.coverity.com).

[10] B. A. Davey and H. A. Priestley. Introduction to
lattices and order. Cambridge University Press,
Cambridge, 1990.

[11] J. Féret. The arithmetic-geometric progression
abstract domain. In Verification, Model Checking and
Abstract Interpretation (VMCAI’05), number 3385 in
LNCS, pages 42–58, 2005.

[12] GrammaTech. CodeSonar. (www.grammatech.com).

[13] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In POPL, pages 58–70,
2002.

[14] M. Karr. Affine relationships among variables of a
program. Acta Inf., 6:133–151, 1976.

[15] T. Lev-Ami and S. Sagiv. Tvla: A system for
implementing static analyses. In Static Analysis
Symposium, pages 280–301, 2000.

[16] A. Loginov, T. W. Reps, and S. Sagiv. Abstraction
refinement via inductive learning. In CAV, pages
519–533, 2005.

[17] A. Miné. The octagon abstract domain. In Proc. of the
Workshop on Analysis, Slicing, and Transformation
(AST’01), IEEE, pages 310–319, October 2001.

[18] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic
implementation of the best transformer. In VMCAI,
pages 252–266, 2004.

[19] R. Rugina. Quantitative shape analysis. In Static
Analysis Symposium, pages 228–245, 2004.

[20] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric
shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst., 24(3):217–298, 2002.

[21] The MathWorks. PolySpace.
(http://www.mathworks.com/products/polyspace).

[22] A. Venet. Abstract cofibered domains: Application to
the alias analysis of untyped programs. In SAS, pages
366–382, 1996.

[23] A. Venet. A scalable nonuniform pointer analysis for
embedded programs. In SAS, pages 149–164, 2004.

[24] A. Venet and G. P. Brat. Precise and efficient static
array bound checking for large embedded C programs.
In Proc. of the Int. Conf. on Programming Language
Design and Implementation (PLDI), pages 231–242,
june 2004.

396

